root/local/: graphrag-vectors-3.0.2 metadata and description
GraphRAG vector store package.
| author | Mónica Carvajal |
| author_email | Alonso Guevara Fernández <alonsog@microsoft.com>, Andrés Morales Esquivel <andresmor@microsoft.com>, Chris Trevino <chtrevin@microsoft.com>, David Tittsworth <datittsw@microsoft.com>, Dayenne de Souza <ddesouza@microsoft.com>, Derek Worthen <deworthe@microsoft.com>, Gaudy Blanco Meneses <gaudyb@microsoft.com>, Ha Trinh <trinhha@microsoft.com>, Jonathan Larson <jolarso@microsoft.com>, Josh Bradley <joshbradley@microsoft.com>, Kate Lytvynets <kalytv@microsoft.com>, Kenny Zhang <zhangken@microsoft.com>, Nathan Evans <naevans@microsoft.com>, Rodrigo Racanicci <rracanicci@microsoft.com>, Sarah Smith <smithsarah@microsoft.com> |
| classifiers |
|
| description_content_type | text/markdown |
| license | MIT |
| metadata_version | 2.4 |
| project_urls |
|
| requires_dist |
|
| requires_python | <3.14,>=3.11 |
Because this project isn't in the mirror_whitelist,
no releases from root/pypi are included.
| File | Tox results | History |
|---|---|---|
graphrag_vectors-3.0.2-py3-none-any.whl
|
|
|
graphrag_vectors-3.0.2.tar.gz
|
|
GraphRAG Vectors
This package provides vector store implementations for GraphRAG with support for multiple backends including LanceDB, Azure AI Search, and Azure Cosmos DB. It offers both a convenient configuration-driven API and direct factory access for creating and managing vector stores with flexible index schema definitions.
Basic usage with the utility function (recommended)
This demonstrates the recommended approach to create a vector store using the create_vector_store convenience function with configuration objects that specify the store type and index schema. The example shows setting up a LanceDB vector store with a defined index configuration, then connecting to it and creating the index for vector operations.
Open the notebook to explore the basic usage with utility function example code
Basic usage implementing the factory directly
This example shows a different approach to create vector stores by directly using the vector_store_factory with enum types and dictionary-based initialization arguments. This method provides more direct control over the factory creation process while bypassing the convenience function layer.
Open the notebook to explore the basic usage using factory directly example code
Supported Vector Stores
- LanceDB: Local vector database
- Azure AI Search: Azure's managed search service with vector capabilities
- Azure Cosmos DB: Azure's NoSQL database with vector search support
Custom Vector Store
You can register custom vector store implementations:
Open the notebook to explore the custom vector example code
Configuration
Vector stores are configured using:
VectorStoreConfig: baseline parameters for the storeIndexSchema: Schema configuration for the specific index to create/connect to (index name, field names, vector size)